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o ABSTRACT

The most stable structures for the alkali-like clusters, M3 - Mg", are calculated

i;it.' within the framework of the simple Hiickel model. The Hiickel geometries are, on

o average, slightly "less compact” than those of the neutral and cation clusters, a
phenomenon which may be related to the additional electronic kinetic energy of the
anions. Cluster compactness is quantified by an estimation of "soft sphere" volumes,
which also allows for a comparison of classical and experimental polarizabilities. The
Hiickel model gives electron affinities which compare favorably with the experimental
e results for Cu; - Cug. To our knowledge, the Hiickel results in this paper represent the first

VN systematic search for the stable structures of small alkali-like anion clusters.
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I. INTRODUCTION

In previous work,12 we reported Hiickel molecular orbital (HMO) structures for
alkali-like clusters Mp, and Mp* with 2 < n 9. The most stable Hiickel geometries were

found to be the same (except for Ms* and Mg*) as those predicted by local spin density

(LSD)34 and configuration interaction (CI)54 calculations for the alkali metals. The Hiickel
results are also in accord with the experimentally determined structures of the ground
state Group IA78 and Group IB%11 trimer and heptamer molecules. Moreover, when
specialized to neutral Na clusters, the relative agreement between HMO and LSD3
atomization energies was less than 4%. For cation clusters, the discrepency between LSD
atomization energies and the Hiickel values, modified by the addition of a classical charge
term, was (on average) only 2%. Hiickel ionization potentials (IP's) give a good fit to the
measured IP's for both Nap, and Kp, reproducing both the observed odd < even alternation

in this parameter and the average, or classical, decrease towards the bulk work function.

Recently, two groups have made extensive electron affinity (EA) measurements on
copper clusters.1617 These data show an odd > even alternation superimposed on a

gradual increase towards the bulk work function. In this paper, we present simple Hiickel
calculations for alkali-like anion clusters M,,". As in the earlier analysis of M, and M,*, we

determine the most stable anion structures amongst all possible Hiickel bonding
arrangements. Cluster atomization energies are computed by combining HMO binding
energies with a classical charge-correlation term similar to that introduced in Ref. 2. Using
these energies plus the neutral cluster results of Ref. 3, the Hickel model gives electron
affinities which reproduce quite well the experimental data for Cu-Cug.
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I1. CLUSTER ANIONS

The HMO stability of an n atom (neutral or ionic) metal cluster is determined by the

eigenvalues (g;) of the Hiickel matrix whose elements are given by (1 <i#j<n):

Hjj= a
1
-B, if i is bonded to j
Hij =
0, otherwise

In Eq. (1), @ and B denote the empirical Hiickel Coulomb and resonance integrals,
respectively.

For the anionic clusters of interest here, the binding energy of a particular bonding

arrangement is

E(n)=(n+1a+ 2 n;e;"
i 2

n+1-2ni
i

where the summations extend over all occupied (n; = 2) or partially occupied (n; = 1)

molecular orbitals. It is most convenient to choose energy units for whicha=0and f = 1.
As in two previous studies,!? we term these "Hiickel units", abbreviated to hu.

In order to determine relative HMO stabilities, it is necessary to diagonalize the
Hiickel matrices for all the physically realizable bonding arrangements of a particular sized
cluster. As described in detail in Ref.1, this procedure is facilitated by using certain
concepts from Graph Theory. Briefly, there is a 1-1 correspondence between the Hiickel
matrix of an n atom cluster containing q bonds and the adjacency matrix of a simple (n,q)
graph. It is relatively straightforward to generate all (n,q) graphs and then to eliminate
those that are isomorphic by making comparisons with "standard graphs” stored in the
form of their incdidence matrices. The validity of this procedure can be checked by Polya’s
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Enumeration Theorem, which can predict the number of distinct and also connected (n,q)
graphs. The graphs may be arranged in order of decreasing stability, as defined by Eq.(2),
eliminating those for which no hard sphere packing arrangement exists. In order to
accomplish this last step, it was mathematically convenient (and physically plausible) to ‘
require a maximum separation between all non-bonded atoms. \

Figure 1 shows the structures found for the most stable anions, My" - Mg". The
corresponding binding energies are given in column 3 of Table 1. While the geometries of
M and My are the same as those found for the neutral (and cation) tetramer and
heptamer,! this is not the case for the remaining anions. Thus, linear My is 0.8 hu more
stable than the D3, arrangement favoured by the neutral and cationic spedies. It is
interesting to note that SCF-CI calculations on Li3!® and Agj!? also find that the anion
geometry is D, Two isoergic structures were found for Ms". One of these, the square
pyramid as shown in Fig.1c, is (by 0.2 hu) the second most stable HMO neutral.! While the
"less compact” 20 Dg), structure is as stable as the square pyramid for Mg, it is 0.6 hu less
stable for neutral Ms. The most stable Mg- structure, Fig.1d, has very low symmetry and is
best described as a capped, distorted square pyramid. The second (by only 0.02 hu) most
stable Mg is much more compact. The structure shown in Fig.1e may be derived from M;-
(Fig.1) by removing one ring atom. The most stable Mg~ cluster is very similar to that
found for neutral Mg! The Fig.1g structure differs from that of Ref.1 by the breaking of a

single bond, which lJowers the anion energy by 0.1 hu but raises that of the neutral octamer
by 0.4 hu.

Aside from My (we exclude the dimer), there have been no ab-initio calculations

on the Group IA and IB cluster anions. The stabilities of a few selected structures for
silver cluster anions up to about Agyy have been explored by semi-empirical methods,

mainly as an aid to interpreting electron affinity and ionization potential data.2122 To our

knowledge, the HMO results presented here represent the first comprehensive attempt to
understand the structures of small anion clusters.
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R 1Il. ELECTRON AFFINITIES

!
i The thermodynamic EA of a cluster is given by

\:"
. EA(n) = EA(1) + AE-(n) - AEXn) (3)
K

' where AE%(n) and AE-(n) are the atomization energies of the neutral and anion cluster,

-

'::. respectively. The neutral cluster atomization energy is the endoergicity for

)

||.

M, =M @
A y and, in the HMO model, is numerically equal to the neutral cluster binding energy, EX(n)
-, in hu. Table I gives EO(n) obtained from Ref. 1. Table I also gives AE%(n) for copper

W

i"f clusters. These data pertain to <> = 1.06 £ 0.07 eV, which is an average obtained 23 from
'3 the experimental cohesive energy of the bulk?4 plus the dimer and trimer atomization
hé energies. 25
) The anion atomization energy is the energy change for the process

l‘

Yo, My =(n-)M + M- (5)

f

) and this is composed of a bond breaking term, numerically equal to E*(n) expressed in hu,
‘:E’. ‘ plus an electrostatic term, §{(n). The latter represents the change in self-energy arising
"1:l

‘,':":' from the relocalization of negative charge implied in Eq. (5). Similarily to the previously
+ discussed cation example,2 we write §*(n) as

yoe

M

e ¢(n) = 5/ge2{1/r1-1/1p) ©)

bR

s'.:o

L where e is the electron charge and ry, is the radius of an n atom anion cluster. In terms of
5 an atomic radius, here taken to be the Wigner-Seitz radius (ry),

v

0 |

" In = rs(nlls-t-e‘) (7)
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RS where € is a "charge spillout” parameter 217 for anions . We adopt € ~ 1, which is in

TE:Z:.. agreement with the atom-bulk interpolation discussed in the next paragraph. The choice
et po paragrap
. e ~ 1 is also in accord with the expected relative (compared to the neutral and cation)
::'5 diffusiveness of an anion cluster, but is somewhat larger than that used in Ref.17.
RS
l.. 5
! The numerical factor of 5/8 in Eq. (6) is chosen to give agreement with the
::':3\ 4 expression for the EA of a classical, conducting drop 2627
e
o
EA(n) = W(e)- 5/ge2/rp ®
ol
2%
'..l: :
s where W(ss) is the work function of the bulk metal?® The correspondence between these
: _ ’ two viewpoints may be seen as follows. For a "classical cluster”, the bond energies of the
:; neutral and anion species are identical, so that
EAM) = EA(D) + §(n) ©)
}.u"
5:';:5 For this situation, Eq. (6) together with the identity EA(cs) = W(=), leads directly to Eq.(8).
b
R Fore = 1, Egs. (7) and (8) imply
vl W(e) - EA(1) = 5e2/16rs (10)
33
'Y
L Table I makes a comparison between W(ee) - EA(1) and 5e2/16rg for both the Group IA and
IS Group IB elements.29 Except for Li, the average deviation between these two parameters is
5%
:E}:}. less than 5%.
::‘:
Ay As in the case of Mp*, we use modified simple Hiickel atomization energies for the
o
. }"'4 anions. These employ the HMO energies, column 2 of Table 1, plus the charge-correlation
E' ' term, Eq. (6) with rp, = 14(n!/3 + 1). Column 5 of Table I gives AE<(n)/n for Cup" assuming p
LALN
- = 1.06 eV and r, = 1.41 A2 The HMO results for Cuy” and Cuy" (0.72 eV and 1.20 eV,
s respectively) are about 10-15% smaller than the corresponding experimental data, namely
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G 0.79 (3) eV and 1.4 (12) eV, from Ref.17. Table I also gives Hiickel electron affinities

%E% obtained from Eq.(1) using EA(1) = 1.24 eV. The HMO electron affinities are compared
3:":';: with the corresponding experimental values!6:17 in Figure 2. The agreement between the
'::r : two data sets is quite good. Both show an odd > even alternation in EA, superimposed on
" " a smoothly increasing classical result.31 The occurence of an odd-even alternation, which
1y also appears in IP data, has a straightforward explanation.16:17.21.22 Roughly speaking, an
.;:::.:: even numbered neutral cluster possesses a set of filled bonding orbitals plus an equal

::gg. number of empty antibonding (AB) orbitals. The IP of such a cluster is (again, roughly

My speaking) the energy of the highest bonding orbital. Odd n clusters possess an additional,
o half filled nonbonding (NB) orbital, lying in between the bonding and AB manifolds. The
'; lower energy of this orbital gives rise to the low IP of an odd atom neutral cluster. For

s.., anions, the lowest energy AB orbital is partially filled for n even, but is empty for n odd.
,- As a consequence, the anion IP's are, in general, lower for even numbered duster sizes.

%,. That there is a reasonable correspondence between this simple orbital picture and the more
E realistic HMO results is evident from the orbital diagram, Fig. 2 of Ref. 2.

o
o

:‘:_ IV. DISCUSSION

» Within the framework of the HMO model, at least, there is a tendency for anion
':‘, clusters to adopt structures which are somewhat less compact20 than those found for the
« : neutrals. One possible cause for this behaviour is the additional kinetic cnergy (KE)

R associated with the extra electron of the anions. A close packing arrangement minimizes
K -’; the potential energy (PE) of a cluster by maximizing the number of bonds between atoms.
_ﬁ For rare gas clusters, in which the electrons are confined to the atomic cores, this

= interaction is dominant and so the most compact arrangement of atoms is generally

' predicted to be the most stable one.32 The stability of a metal cluster is determined not
'\%: ‘ only by the pairwise potential interaction between nearest neighbor atoms, but also by the
e KE of the valence electrons which are delocalized over the molecular framework. In the
E:': HMO model, there is a strong correspondence between the energy (Ejg, in hu) of the lowest
o
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R 1s-molecular orbital and <q>, the average number of bonds (i.e. nearest neighbours) per

: atom in the cluster. Table IIl shows some representative examples. Included in this Table
: are the most stable neutral cluster structures found by HMO calculations in Ref.1, plus

. some additional geometries (Do}, Tq for n = 3 and 4; C4y and Dgy, for n = &} which

compare differing packing arrangements and dimensionalities. For the data of Table II the
average difference between E;; and <q> is only 2%.

S A similar correspondence pertains to macroscopic samples.22¢ The 1s level in
HMO theory correlates with the k = 0 position (k = wavevector) of a metal in the bulk
-». limit.2 In the tight binding model, which is the macroscopic counterpart of Hiickel theory,
W

"

the electronic energy of a metal may be expanded near k = 0 to give a PE term plus a KE
term.2.2¢ The latter is the same as the energy expression obtained from the Fermi gas
model for free electrons. The PE (in hu) is numerically identical to the number (6, 8 or 12)

K< of nearest neighbours in a (simple, body centered or face centered) cubic lattice.

Thus for an HMO duster, the total energy may be considered to be approximately

i partitioned into two competing components: a negative potential contribution, nearly
equal in magnitude to the energy of the 1s level, and a positive KE associated with the
delocalized valence electrons. This implies that any stabilization of less compact structures
i originates in a reduction of the electronic KE, suggesting that more compact structures

ﬁ confine the valence electrons to a smaller volume. This should give rise to larger KE's
which would be of relatively greater importance for negatively charged clusters. A similar
competition might explain why, for the neutral tetramer and pentamer, the less compact
plarar structures are predicted 2-6 to be more stable than the three-dimensional
arrangments favored by rare gas clusters.

It is straightforward to compute packing fractions for differing, but regular,
: arrangements of atoms in a macroscopic sample.24 For a cluster composed of hard sphere
(eg. argon) atoms, then the volume occupied by the electrons is independent of structure.
For the case of alkali-like atoms, however, the valence electrons presumably occupy a

9
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volume defined by the shape and bonding arrangement of the individual cluster. This

volume was estimated using a soft sphere model. Each atom was assigned a unit charge
occupying a spherical volume larger than the hard sphere volume which determines .
nearest neighbour distances. The soft sphere radius was chosen as the distance where the
electron density for an atomic (for example Na) Slater orbital has fallen to about 90% (say)

of its maximum value.33 The total size of a particular arrangement of n atoms is the

PR B o [ L R Y

volume enclosed by n overlapping soft spheres, and this may be estimated by Monte Carlo

integration.34

A L. .

Some pertinent soft sphere cluster volumes are given in column 5 of Table IlI. The
data pertain to neutral Na clusters, with estimated errors (1 standard deviation )

uncertainty) given in parentheses and a total of 50,000 integration points except for n = 2-5

v PEERDy Ty e

for which 106 points were employed. Cluster volumes are displayed as total volumes,
V(n), divided by the volume of n individual atoms. For n = 6 - 9, the data correspond to
the most stable HMO neutral structures (point group given in column 2) as discussed in

Ref. 1. The data for n = 3, 4 and 5 compare the soft sphere volumes of clusters having

different degrees of compactness. Thus the D3}, trimer has an approximately 4% smaller
volume than the linear D}, arrangement. Similarily, the three-dimensional tetrahedral L
cluster is approximately 2.5% smaller in total volume than the planar (but more stable 2-6) 2
rhombus. The variation amongst pentamer structures is somewhat greater. The 3
pentagonal arrangement is 5% larger than the most stable 2 neutral (Cy, point group), ';

and 7.5% larger than the three-dimensional square pyramid (C4, point group).

While small, these differences in soft sphere volumes are both statistically and
physically significant. The volume of an n atom cluster is proportional to its classical '

polarizability, a(n), 35 implying

a(n) _ V(n) (11)
na(1) nV(1)

10
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Figure 3 compares soft sphere V(n)/nV(1) data from Table Il with the experimental
polarizabilities for Naj - Nag.36 The experimental polarizabilities decrease slowly to a bulk
value of a(n)/na(1) ~ 0.4 - 0.5, but oscillate about the soft sphere average particularily at
small n. These oscillations arise from quantum effects and have been partially accounted
for by jellium calculations.437.38 The soft sphere model does not (of course) include
quantum effects and the slight discontinuity at n ~ 6 is a manifestation of the transition
from two-dimensional to three-dimensional geometries.

Also shown in Fig.3 is a cruder classical approximation:

ain) = (n1/3+¢0)3 (12)

na(1) n(1 + ¢0)3

Eq. (12) assumes that the cluster is a spherical classical drop whose radius is related to an
atomic radius (ry) by

I =r,(n1/3 4 0) (13)

This expression is similar to Eq. (7), but here €° is the "charge spillout” parameter
appropriate to a neutral cluster. The classical drop curve shown in Fig. 3 pertains to

€° = 023, which was obtained by fitting all the polarizability data (n = 2 - 40) in Ref. 36. The
agreement between the two classical results is surprisingly good, espedially in view of the
differing and independent parameterizations for each model and so lends additional
authority to the dassical drop model invoked in this work and elsewhere.212.17.36

In conclusion, we have determined the most stable HMO structures for the alkali-
like metal cluster anions, M3- - Mg~. The HMO geometries are somewhat less “compact”

than those of the neutral and cation clusters, and it is suggested that this may be related to
the additional electronic KE of the anions. The cluster compactness is quantified not only

by bond enumeration, but also through an estimation of soft sphere volumes, the latter

11
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i being directly related to duster polanzabilines The Huckel madel gives electron atfinities

which compare favorably with the expenmental results for Cuy - Cug
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TABLE L.

cluster energies from Ref.1.

Hiickel binding energies, atomization energies and electron

affinities. Data in eV pertain to Cu, using B = 1.06(7) eV (see text). Neutral

n E%(n) E-(n) AE(n)/n  AE-An)/n EA(n)
hu eV
1 0.0000 0.0000 0.00 0.00 1.24
2 - 2.0000 - 1.0000 1.06 0.72 0.56
3 - 3.0000 -2.8284 1.06 120 1.65
4 -5.1231 -4.1231 136 128 0.93
5 - 6.6443 -6.4721 1.41 154 191
6 -9.3711 - 8.2005 1.66 1.61 0.95
7 -11.1054 -11.1054 1.68 183 226
8 -14.1604 -12.7268 1.88 182 0.82
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TABLEIL

Atomic electron affinities, EA(1), bulk work functions, W(ee),
and Wigner-Seitz radii (rg, in A) for the Group IA and IB metals. Columns 5

and 6 compare W(e) - EA(1) with 5e2/16rg. Energy units are eV.

EA(1)2 W(e) b rg C W(w) -EA(1) 45/rg

Li 0.62 2.32 1.72 1.70 262
Na 0.55 275 2.08 220 216
K 0.50 2.30 2.57 1.80 1.75
Rb 0.49 2.09 2.75 1.60 1.64
Cs 0.47 214 2.98 1.67 1.51
Cu 1.24 465 141 34l 3.19
Ag 1.30 4.26 1.60 296 2.81
Au 2.31 5.1 159 28 2.83

4 From Ref. 30.

b From Ref. 28.

€ From Ref. 24.
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N TABLE II1. Comparison of the average number of bonds/atom <q> with
o the lowest Hiickel orbital energy (E1g in hu), and of soft sphere volume
l" polarizabilities V(n) with the experimental a(n) for Nap.
.-E [
:::; n Point Group <q>2 |Eqg! V(n)/nV(1) b a(n)/na(l) €
¥
Sy
iy 2 Deot 1.00 1.00 0.920 0.800
3 D3p 2.00 2.00 0.862 0.980
",:".' 3 Den 133 141 0.896
b 4 Ta 3.00 3.00 0.814
Y 4 Dap 2.50 2.56 0.835 0.856
L 5 Cev 3.20 3.24 0.798
oo 5 Cay 2.80 2.94 0.819 0.907
e, 5 Dsp, 2.00 2.00 0.859
. 6 Csy 333 3.45 0.781 0.857
o 7 Dsp, 429 432 0.742 0.723
8 Dy 450 454 0.726 0.687
32 9 D 4.67 4.70 0717 0.738
) J‘:
oy
22
" 2 From Ref. 1.
v" b Estimated error £ 0.003 forn =2-5;£0.013forn=6 - 9.
N € From Ref. 36.
b
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FIGURE CAPTIONS

Fig. 1. Geometries for the most stable HMO clusters, M3~ - Mg~

Fig. 2. Comparision of Hiickel and experimental electron affinities for Cu- - Cug”. Open

circles pertain to this work. Triangles and full circles are EA data from Refs.16 and 17,
respectively.

Fig. 3. Comparison of experimental polarizabilities (Na data from Ref. 36) with soft sphere
(see text) and classical drop approximations.
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